
Identification of FIR Wiener systems with unknown, non-invertible, polynomial non-linearities

SETH L. LACY{* and DENNIS S. BERNSTEIN{

Wiener systems consist of a linear dynamic system whose output is measured through a static non-linearity. In this paper
we study the identification of single-input single-output Wiener systems with finite impulse response dynamics and
polynomial output non-linearities. Using multi-index notation, we solve a least squares problem to estimate products
of the coefficients of the non-linearity and the impulse response of the linear system. We then consider four methods for
extracting the coefficients of the non-linearity and impulse response: direct algebraic solution, singular value decomposi-
tion, multi-dimensional singular value decomposition and prediction error optimization.

1. Introduction

Non-linear system identification remains one of the
most challenging and potentially useful problem areas in
system theory. Numerous approaches have been
developed for this problem, including black box and

grey box techniques (Bayard and Eslami 1984,
Pajunen 1985, Hunter and Korenberg 1986, Korenberg
and Hunter 1986, Hasiewicz 1987, Chen and Fassois
1992, 1997, Greblicki 1992, 1994, 1997, 1998,

Westwick and Kearney 1992, Wigren 1994, Westwick
and Verhaegen 1996, Bai 1998, Lovera et al. 2000,
Van Pelt and Bernstein 2000, Lacy and Bernstein
2001, Lacy et al. 2001, Nelles 2001). The grey box case

includes the identification of block-structured models,
such as the Hammerstein model (linear system with
input non-linearity) and Weiner model (linear system
with output non-linearity) (Haber and Keviczky

1999 a, b).
This paper is concerned with identifying Wiener

systems under more general assumptions than have
been previously considered. Many methods for Wiener

system identification require the non-linearity to be
known, invertible, differentiable, odd or require
specially designed input sequences. In particular, the
Wiener identification problem has been considered in

Brillinger (1970), Pajunen (1985), Hasiewicz (1987),
Greblicki (1992, 1994, 1997, 1998), Westwick and
Kearney (1992), Wigren (1994), Westwick and
Verhaegen (1996), Bai (1998), and Lovera et al. (2000)

under the assumption that the non-linearity is unknown
but one-to-one. This assumption simplifies the problem
considerably since the inverse system can be viewed as a
Hammerstein system wherein the input to the non-

linearity is measured. If the non-linearity is known but

not one-to-one, then identification is possible by first

generating a candidate set of signals at the output of

the linear system (Bayard and Eslami 1984, Lacy et al.

2001). These methods are applicable even if the output

non-linearity is a step function in which case the output

assumes at most two distinct values (Lacy et al. 2001). If

the input sequence can be chosen freely, the frequency

content of the input sequence can be selected such that

the effect of the non-linearity can be derived from the

frequency content of the output (Pintelon and

Schoukens 2001).

In the present paper we consider Wiener system

identification in which the output non-linearity is both

unknown and not necessarily one-to-one. In this case

the goal is to simultaneously identify both the linear

system dynamics and the non-linearity despite the non-

invertibility of the output non-linearity. To do this

we assume that the non-linearity can be represented as

a finite sum of polynomials. We use multi-index

notation (Evans 1998, Dunkl and Xu 2001) to expand

this polynomial and write the output as a linear-in-

parameters sum of known terms with unknown coeffi-

cients. These coefficients consist of products of the

system parameters. We then present several methods

for extracting the system parameters. This approach of

expanding the polynomial output non-linearity requires

that the linear system output depend only on past

inputs, that is, the linear dynamics are assumed to be

FIR.

This paper is organized as follows. In } 2 we define

the problem and list the assumptions. In } 3 we intro-

duce notation used throughout the paper. In } 3.1 we

present an algebraic solution. In } 3.2 we present a sol-

ution based on a singular value decomposition. In } 3.3
we present a solution based on a multi-dimensional sin-

gular value decomposition (Andersson and Bro 2000).

In } 3.4 we present an optimality approach based on a

prediction-error cost function. In } 4 we apply all of

these methods to an example to illustrate their imple-

mentation and compare their effectiveness.
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2. Problem description

Here we study the identification of a single-input,

single-output, linear time-invariant system with finite

impulse response whose output is measured through a

static non-linearity. This system, which is represented in

figure 1, is modelled by

yðkÞ ¼ ðh0uðkÞ þ h1uðk� 1Þ þ � � � þ hmuðk�mÞ

¼
Xm
i¼0

hiuðk� iÞ ð1Þ

zðkÞ ¼ N ðyðkÞÞ ð2Þ

where u is the input to the system, y is the unmeasured

output of the linear system, hi are Markov parameters,

and z is the measured output of the non-linearity. We

assume that the non-linear function N : R ! R is a

polynomial of the form

NðyðkÞÞ ¼
Xp
i¼0

ciyðkÞi ð3Þ

If N is not a polynomial, then (3) can be regarded as an

approximation. We assume that the order m of the FIR

dynamics and the degree p of the polynomial N are

known. The non-linearity N is otherwise unknown

and not necessarily one-to-one. In the practical situation

m and p are not known. Also, it may be difficult to

obtain satisfactory results if these parameters are under-

estimated. However, if upper bounds on these par-

ameters are known, then the bounds can be used in (1)

and (3) at the expense of increasing the computational

complexity. Alternatively, the values for p and N can be

incremented until satisfactory performance is achieved,

at the expense of increasing the computational load at

each increment.

The identification problem is to estimate the coeffi-

cients hi and ci using ‘ measurements of u and z. We

adopt a two-stage approach. First, we solve a least

squares problem to obtain an estimate ĥh of a vector h

whose entries are the unknown parameters and products

of the unknown parameters. Next, we present several

techniques that use ĥh to estimate the individual

unknown parameters. In addition, we minimize a

prediction error cost function to further refine the

parameter estimates and compare to the direct

approaches.

3. Wiener identification

Using (3), we rewrite equation (2) as

zðkÞ ¼
Xp
i¼0

ciyðkÞi ¼
Xp
i¼0

ci
Xm
j¼0

hjuðk� jÞ
 !i

¼
Xp
i¼0

ci
X
j�j¼i

j�j!
�!

h�vðkÞ� ¼
Xp
j�j¼0

j�j!
�!

vðkÞ�cj�jh�

¼ �ðkÞTh ð4Þ

where

h ¼ ½h0 h1 � � � hm�T 2 R
mþ1 ð5Þ

� ¼ ½�1 �2 � � � �mþ1�T 2 N
mþ1
0 ð6Þ

vðkÞ ¼ ½uðkÞ uðk� 1Þ � � � uðk�mÞ�T 2 R
mþ1 ð7Þ

h ¼ ½cj�jh��j�j� p 2 R
Dmþ1

P ð8Þ

�ðkÞ ¼ j�j!
�!

vðkÞ�
� �

j�j� p

2 R
Dmþ1

P ð9Þ

and � 2 N
mþ1
0 is a multi-index whose order is mþ 1,

where N0 is the set of positive integers and zero.
A multi-index is a vector whose components are non-
negative integers (see Evans 1998, Dunkl and Xu 2001).
We define

j�j ¼ �1 þ �2 þ � � � þ �mþ1 ¼
Xmþ1

i¼1

�i ð10Þ

�! ¼ ð�1!Þð�2!Þ � � � ð�mþ1!Þ ¼
Ymþ1

i¼1

�i! ð11Þ

vðkÞ� ¼ v1ðkÞ�1v2ðkÞ�2 � � � vmþ1ðkÞ�mþ1 ¼
Ymþ1

i¼1

viðkÞ�i ð12Þ

h� ¼ h�1

1 h�2

2 � � � h�mþ1

mþ1 ¼
Ymþ1

i¼1

h�i

i ð13Þ

The number of multi-indices of order mþ 1 of fixed
absolute value i is given by

Cmþ1
i ¼ mþ i

i

� �
¼ mþ i

m

� �
¼ ðmþ iÞ!

m!i!
ð14Þ

and the number of multi-indices of order mþ 1 of abso-
lute value less than or equal to p is given by

Dmþ1
p ¼

Xp
i¼0

Cmþ1
i ¼

Xp
i¼0

ðmþ iÞ!
m!i!

ð15Þ

We need to define an order relation for multi-indices of
the same order. Let �, � 2 N

mþ1
0 be multi-indices. If

j�j > j�j then � > �. If � and � have the same order,
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Figure 1. Wiener system.



j�j ¼ j�j, then we choose the standard dictionary order-
ing. The notation

½ f ð�Þ�j�j� p ¼

½ f ð�Þ�j�j¼0

½ f ½ð�Þ�j�j¼1

..

.

½ f ð�Þ�j�j¼p

2
66666664

3
77777775

ð16Þ

denotes the column vector whose components are f eval-
uated at every multi-index � such that j�j � p. The com-
ponents are ordered according to the above ordering
scheme. This vector has Dmþ1

p components. Thus h and
�ðkÞ have Dmþ1

p components.
To estimate h we rewrite (4) as

z ¼ FTh ð17Þ

where

z ¼ ½zðmþ 1Þ � � � zð‘Þ�T 2 R
‘�m ð18Þ

F ¼ ½�ðmþ 1Þ � � � �ð‘Þ 2 R
Dmþ1

p �‘�m ð19Þ

We assume FFT is non-singular, which is a persistency
of excitation condition that requires ‘ � Dmþ1

p þm.
Then we calculate the least squares estimate ĥh of h

given by

ĥh ¼ ðFFTÞ�1�z ð20Þ

Next we develop several methods for obtaining esti-
mates ĉc and ĥh based on ĥh. Note that an arbitrary scaling
and its reciprocal can be applied to the linear system and
the output non-linearity. We remove this ambiguity by
introducing a normalization constraint, thereby select-
ing a single system from a class of equivalent systems.
We can normalize ĉc and ĥh by setting ĉci ¼ a, ĥhi ¼ a,
kck ¼ a, khk ¼ a or various other constraints.

3.1. Direct solve

We have mþ pþ 2 unknown parameters in h and c,
one normalization constraint and Dmþ1

p equations in
terms of ĥh. We can normalize as above, then choose
mþ pþ 1 independent equations. These mþ pþ 1
equations must also be independent of the constraint
equation, which constitutes equation number
mþ pþ 2. A symbolic manipulator such as
Mathematica can be used to invert these non-linear
equations and obtain estimates ĥh and ĉc of h and c.

3.2. SVD

To begin, ĉc0 can be estimated directly by

ĉc0 ¼ ĥhð1Þ ð21Þ

To estimate the remaining components of ĉc and ĥh, we
arrange the components of h into the matrix
AðhÞ 2 R

mþ1�Dmþ1
p�1 , where

AðhÞ ¼  hT ð22Þ

and

 ¼ ½cj�jþ1h
��j�j<p ð23Þ

Then we calculate the singular value decomposition

AðĥhÞ ¼ USVT ð24Þ

to obtain the estimates

ĥh ¼ �Sð1; 1ÞVð1; :Þ ð25Þ

 ̂ ¼ 1

�
Uð1; :Þ ð26Þ

where the scalar � 6¼ 0 selects the normalization con-
straint. Finally, we extract the non-linearity coefficients
ĉci from  ̂ . Specifically, ĉc1 is given directly by  ̂ ð1Þ, while
the remaining coefficients are calculated using least
squares estimation and ĥh.

3.3. Multi-dimensional SVD

First, we define the tensors A0 2 R, Aj 2 �j
i¼1R

nþ1

A0ðhÞ ¼ c0 ð27Þ

A1ðhÞ ¼ c1h ¼ hA1
ð28Þ

A2ðhÞ ¼ c2h � h ¼ �2i¼1hA2
ð29Þ

A3ðhÞ ¼ c3h � h � h ¼ �3i¼1hA3
ð30Þ

ApðhÞ ¼ cp �pi¼1 h ¼ �pi¼1hAp
ð31Þ

where

hAn
¼ c1=nn h ð32Þ

We use a multi-dimensional singular value decomposi-
tion (Andersson and Bro 2000) to obtain the estimate
ĥhAi

of hAi
. To do this we note that

½hA1
hA2

� � � hAp
� ¼ hdT ð33Þ

where

d ¼ ½c1 c
1=2
2 � � � c1=pp �T ð34Þ

Hence we compute the singular value decomposition

½ĥhAi
� � � ĥhAp

� ¼ USVT ð35Þ

to obtain the estimates
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ĥh ¼ �Sð1; 1ÞUð:; 1Þ ð36Þ

d̂d ¼ 1

�
Vð:; 1Þ ð37Þ

ĉci ¼ d̂di
i ð38Þ

where � 6¼ 0 selects the normalization constraint.

3.4. Prediction error cost function

Consider the prediction error cost function

Jpeðĉc; ĥhÞ ¼ kz� ẑzk ð39Þ

where ẑz is the response of the estimated system, that is

ẑzðkÞ ¼
Xp
i¼0

ĉci
Xm
j¼0

ĥhjuðk� jÞ
 !

ð40Þ

Hence

J2
peðĉc; ĥhÞ ¼

X‘
k¼mþ1

zðkÞ �
Xp
j�j¼0

j�j!
�!

vðkÞ�ĉcj�jĥh�
0
@

1
A

2

ð41Þ

The derivatives of ẑzðkÞ are

@ẑzðkÞ
@ĉci

¼
X
j�j¼i

j�j
�!

vðkÞ�ĥh� ¼ i!
X
j�j¼i

ĥh�

�!
vðkÞ� ð42Þ

@ẑzðkÞ
@ĥhi

¼
Xp
j�j¼0

j�j!
�!

vðkÞ�ĉcj�j�i ĥh
��ei ð43Þ

where ei is the ith column of Imþ1. Hence

@J2
pe

@ĉci
¼ 2

X‘
k¼mþ1

ðzðkÞ � ẑzðkÞÞ �
X
j�j¼i

i!

�!
vðkÞ�ĥh�

0
@

1
A

¼ �2i!
X
j�j¼i

ĥh�

�!

X‘
k¼mþ1

vðkÞ�ðzðkÞ � ẑzðkÞÞ ð44Þ

and

@J2
pe

@ĥhi
¼ 2

X‘
k¼mþ1

ðzðkÞ � ẑzðkÞÞ �
Xp
j�j¼0

j�j!
�!

vðkÞ�ĉcj�j�i ĥh
��ei

0
@

1
A

¼ �2
Xp
j�j¼0

j�j!
�!

ĉcj�j�i ĥh
��ei

X‘
k¼mþ1

vðkÞ�ðzðkÞ � ẑzðkÞÞ

ð45Þ

The second derivatives are given by

@J2
pe

@ĉci@ĉcj
¼ 2i!j!

X
j�j¼i

ĥh�

�!

X
j�j¼j

ĥh�

�!

X‘
k¼mþ1

vðkÞ�vðkÞ� ð46Þ

@J2
pe

@ĉci@ĥhj
¼ �2i!

X
j�j¼i

1

�!

X‘
k¼mþ1

vðkÞ�

� �j ĥh
��ej ðzðkÞ � ẑzðkÞÞ � ĥh�

Xp
j�j¼0

j�j!
�!

vðkÞ� ĉcj�j�j ĥh��ej

0
@

1
A

ð47Þ

and

@J2
pe

@ĥhi@ĥhj
¼ �2

Xp
j�j¼0

j�j!
�!

ĉcj�j�i

X‘
k¼mþ1

vðkÞ�

�
"
ð�j � �ijÞĥh��ei�ej ðzðkÞ � ẑzðkÞÞ � ĥh��ei

�
Xp
j�j¼0

j�j!
�!

vðkÞ� ĉcj�j�j ĥh��ej

#
ð48Þ

where

�ij ¼
1 if i ¼ j

0 else

(
ð49Þ

Using the above expressions, we implement a gradi-

ent-based optimization algorithm to minimize Jpe and

obtain estimates ĉc and ĥh. Assuming c1 6¼ 0, we normalize

by letting ĉc1 ¼ 1, and thus remove it from the optimiza-

tion problem.

4. Example

Let m ¼ 1, p ¼ 3, ‘ ¼ 213 ¼ 8192, h ¼ ½2 1�T,
c ¼ ½�20 1 10 1�T, and NðyÞ ¼ �20þ yþ 10y�
y3, which is shown in figure 2. Thus

yðkÞ ¼ h0uðkÞ þ h1uðk� 1Þ ð50Þ

zðkÞ ¼ c0 þ c1h1uðk� 1Þ þ c1h0uðkÞ þ c2h
2
1uðk� 1Þ2

þ 2c2h0h1uðkÞuðk� 1Þ þ c2h
2
0uðkÞ2

þ c3h
3
1uðk� 1Þ3 þ 3c3h1h

2
0uðkÞuðk� 1Þ2

þ 3c3h
2
0h1uðkÞ2uðk� 1Þ þ c3h

3
0uðkÞ3 þ wðkÞ

¼ �ðkÞThþ wðkÞ ð51Þ

where

Identification of FIR Wiener systems 1503



h ¼ ½cj�jh��j�j� p

¼ ½ c0 c1h1 c1h0 c2h
2
1 c2h0h1 c2h

2
0 c3h

3
1 c3h0h

2
1 c3h

2
0h1 c3h

3
0 �

ð52Þ

�ðkÞ ¼ j�j!
�!

vðkÞ�
� �

j�j� p

¼ ½1 uðk� 1Þ uðkÞ uðk� 1Þ2 2uðkÞuðk� 1Þ uðkÞ2 uðk� 1Þ3

3uðkÞuðk� 1Þ2 3uðkÞ2uðk� 1Þ uðkÞ3�T ð53Þ

and wðkÞ is a realization of a zero-mean Gaussian pro-
cess such that the signal to noise ratio

S=N ¼ kz� wk
kwk ¼ 10 ð54Þ

Then (17) is replaced by

z ¼ FT
hþ w ð55Þ

where

z ¼ ½zð2Þ � � � zð‘Þ�T ð56Þ

F ¼ ½�ð2Þ � � � �ð‘Þ� ð57Þ

w ¼ ½wðmþ 1Þ � � � wð‘Þ�T ¼ ½wð2Þ � � � wð‘Þ�T ð58Þ

We assume FFT is non-singular, and estimate the par-
ameter vector using (20).

4.1. Direct solve

We have mþ pþ 2 ¼ 6 unknown parameters, one
normalization constraint, and Dmþ1

p ¼ 10 equations.
We choose to normalize by setting ĉc1 ¼ 1, and solve
mþ pþ 1 ¼ 5 equations. Using ĥhð1Þ, ĥhð2Þ, ĥhð3Þ, ĥhð4Þ,
ĥhð7Þ and ignoring the rest of ĥh we obtain

ĉc0 ¼ ĥhð1Þ; ĉc1 ¼ 1; ĉc2 ¼
ĥhð4Þ
ĥhð2Þ2

ð59Þ

ĉc3 ¼
ĥhð7Þ
ĥhð2Þ3

; ĥh0 ¼ hð2Þ; ĥh1 ¼ ĥhð3Þ ð60Þ

Figure 3(a) shows ĥh for 100 simulations, each having a
different realization of the input and noise sequences.
Figure 3(b) shows the identified non-linearity.

4.2. SVD

Here we arrange the components of ĥh into a matrix
that is also an outer product of h and  . Then we com-
pute the singular value decomposition of this matrix to
find ĥh and  ̂ . Finally, we extract ĉc from  ̂ . First, ĉc0 can
be estimated directly as in (21). To find the remaining
parameters, we arrange the components of ĥh as

AðhÞ ¼  hT ¼ ½cj�jþ1h
��j�j<ph

T

¼

c1

c2h1

c2h0

c3h
2
1

c3h0h1

c3h
2
0

2
6666666666664

3
7777777777775
½h0 h1� ¼

hð3Þ hð2Þ

hð5Þ hð4Þ

hð6Þ hð5Þ

hð8Þ hð7Þ

hð9Þ hð8Þ

hð10Þ hð9Þ

2
6666666666664

3
7777777777775

ð61Þ

We calculate the singular value decomposition of AðĥhÞ
as in (24). Then we obtain ĥh and  ̂ from (25) and (26).
Next, we extract the non-linearity coefficients ci from  ̂ .
ĉc1 is given directly by  ̂ ð1Þ, and we calculate the remain-
ing ci using least squares estimation. In this case the
normalization constraint is selected by the choice of
the scalar �. We choose to normalize by setting
� ¼ Uð1; 1Þ such that ĉc1 ¼  ̂ ð1Þ ¼ 1. In figure 3(c) we
plot ĥh for 100 simulations. In figure 3(d) we plot the
identified non-linearity.

4.3. Multi-dimensional SVD

We arrange the elements of h into several matrices as
in (27)–(31), corresponding to ci and the ith power of h

A0 ¼ c0 ¼ hð1Þ ð62Þ

A1 ¼ c1h ¼ c1
h0

h1

" #
¼

hð3Þ

hð2Þ

" #
¼ hA1

ð63Þ

A2 ¼ c2h � h ¼ c2
h0

h1

" #
½h0 h1�

¼
hð6Þ hð5Þ

hð5Þ hð4Þ

" #
¼ hA2

� hA2
ð64Þ

1504 S. L. Lacy and D. S. Bernstein
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A3 ¼ c3h � h � h ¼ hA3
� hA3

� hA3

¼ c3

h30 h20h1

h20h1 h0h
2
1

h20h1 h0h
2
1

h0h
2
1 h31

2
666664

3
777775 ¼

hð10Þ hð9Þ

hð9Þ hð8Þ

hð9Þ hð8Þ

hð8Þ hð7Þ

2
666666664

3
777777775

ð65Þ

We use a multi-dimensional singular value decomposi-
tion (Andersson and Bro 2000) to estimate the scaled
Markov vector hAi

. Next, we arrange these results in a
matrix and compute the singular value decomposition as
in (35) to estimate ĥh, d̂d, and ĉc, see (36)–(38). In this case
the normalization constraint is enforced by how we
choose �. We choose to normalize by setting
� ¼ VAð1; 1Þ resulting in ĉc1 ¼ 1. In figure 3(e) we plot
ĥh for 100 simulations. In figure 3(f) we plot the identified
non-linearity.

4.4. Prediction error cost function

We minimize the standard prediction error cost func-
tion, Jpeðĉc; ĥhÞ ¼ kz� ẑzk, initialized with one of the three
algorithms discussed earlier. Using the derivatives given
previously we obtain ĉc� and ĥh�. Although the results of
the optimization are generally independent of the
method used to obtain the initial estimate, the number
of iterations needed by the optimization routine to
converge usually depends on the accuracy of the initial
estimate. We used lsqnonlin in the Matlab optimi-
zation toolbox to minimize the function. In figure 3(g)
we plot ĥh for 100 simulations. In figure 3(h) we plot the
identified non-linearity. Due to noise effects, the value of
the cost function evaluated at the optimal parameters is
generally less than the cost function evaluated at the true
parameters Jpeðĉc�; ĥh�Þ < Jpeðc; hÞ.

4.5. Discussion

The four methods presented, namely direct algebraic
solution, singular value decomposition, multi-dimen-
sional singular value decomposition and prediction-
error minimization, produced solutions of varying accu-
racy. Solving some of the equations for the unknown
parameters generally produced poor quality estimates,
as compared to the other three. Since the direct algebraic
solution method uses only a fraction of the entries of ĥh
to compute the estimates, it is less robust than the other
three methods. In addition, the direct algebraic solution
method requires user interaction to select which equa-
tions to solve.

The singular value decomposition approch produced
estimates that were close to the ones obtained by the
prediction error minimization, but relied only on a sin-

gular value decomposition and some subsequent least
squares steps. This method is the simplest to implement
both for the user and numerically.

The multi-dimensional singular value decomposition
approach produced estimates comparable to the first
singular value decomposition approach, but the multi-
dimensional singular value decomposition is more com-
plex to implement than the two-dimensional singular
value decomposition approach.

The prediction-error minimization approach is the
most complex to implement. For best results, it should
be initialized using one of the previous methods.
However, it produced the best estimates of both the
linear dynamics and the output non-linearity.

5. Conclusion

This paper presented four methods for identifying
FIR Wiener systems with polynomial non-linearities.
We presented three methods for simultaneous direct
estimation of the non-linearity and linear dynamics,
and a prediction error optimization method.

Many authors have studied Wiener system identifi-
cation under the assumption that the non-linearity is
unknown but one-to-one (Brillinger 1970, Pajunen
1985, Hasiewicz 1987, Greblicki 1992, 1994, 1997,
Westwick and Kearney 1992, Wigren 1994, Westwick
and Verhaegen 1996, Bai 1998, Lovera et al. 2000).
Other methods for Wiener system identification require
the non-linearity to be known, invertible, monotonic,
odd, even, or require the use of specially designed
input sequences. In this paper we require the non-lin-
earity to be polynomial and the linear dynamics to have
finite impulse response. These two assumptions are prac-
tical in that many non-linearities can be approximated
with polynomials, and that many systems with infinite
impulse response can be approximated with finite
impulse response dynamics.

Future work will focus on extending the method in
three directions: first, the identification of sandwich non-
linear systems, i.e. systems with both input and output
non-linearities; second, the identification of IIR Wiener
systems; and finally, identification of Wiener systems
with non-polynomial output non-linearities. While the
identification of sandwich non-linear systems using this
approach seems tractable, overcoming the FIR and
polynomial assumptions on the linear dynamics and
output non-linearity appears to be more challenging.
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